OCBITA

УДК [621.384.64:539.1.089.6]: 615.849.1

ЕГОР ВЛАДИМИРОВИЧ ТИТОВИЧ, ИГОРЬ ГЕРМАНОВИЧ ТАРУТИН, ГЕОРГИЙ ВЛАДИМИРОВИЧ ГАЦКЕВИЧ, МАКСИМ НИКОЛАЕВИЧ ПЕТКЕВИЧ

ГУ «РНПЦ онкологии и медицинской радиологии им. Н. Н. Александрова», а/г Лесной, Минский район, Беларусь

ОТКРЫТИЕ УЧЕБНОГО ЦЕНТРА В РНПЦ ОНКОЛОГИИ И МЕДИЦИНСКОЙ РАДИОЛОГИИ им. Н. Н. АЛЕКСАНДРОВА

Цель работы. Разработка программ обучения медицинских физиков отделений лучевой терапии для учебного центра в РНПЦ онкологии и медицинской радиологии им. Н. Н. Александрова.

Материалы и методы. Учебные планы и программы повышения квалификации специалистов, работающих в области лучевой терапии.

Результаты. Разработаны программы обучения для двух учебно-методических курсов.

Выводы. Планируется проведение одного курса обучения медицинских физиков в 2017 году и двух курсов в 2018 году. В учебном центре могут проходить обучение и граждане других стран.

Ключевые слова: учебный центр, лучевая терапия, курсы для медицинских физиков.

В конце 2016 года Государственное учреждение «Республиканский научно-практический центр онкологии и медицинской радиологии им. Н. Н. Александрова» в г. Минске (Беларусь) получило лицензию на образовательную деятельность по последипломному повышению квалификации в области онкологии и медицинской физики от Министерства образования республики. В центре разработан целый ряд учебно-тематических курсов по онкологии, радиационной онкологии и медицинской физике. Слушателями курсов могут стать не только специалисты Беларуси, но и граждане других стран. Курсы будут проводиться на русском языке. Длительность курсов может составлять от 40 до 120 учебных часов.

Рассмотрим учебные программы по медицинской физике.

Предусмотрено проведение пока двух курсов:

- 1. Дозиметрическое планирование облучения пациентов и радиационная защита в лучевой терапии.
- 2. Основы технического обеспечения лучевой терапии, контроль качества и дозиметрическое обеспечение радиотерапевтических аппаратов.
- В октябре 2017 года запланирован первый пилотный курс длительностью 40 учебных часов по первой теме. Приводим учебно-тематический план и программу этого курса.

1. Профильный раздел	40	16	24
1.1. Дозиметрическое планирование облучения пациентов	36	14	22
 1.1.1. Понятия и определения, используемые при проведении планирования облучения 	2	2	_
1.1.2. Работа с анатомической информацией о пациенте в планирующей системе	4	2	2
1.1.3. Методы планирования облучения	4	2	2
1.1.4. Критерии оценки плана облучения	4	2	2
1.1.5. Дозиметрическое планирование опухолей малого таза	6	2	4
1.1.6. Дозиметрическое планирование опухолей грудной клетки	8	2	6
1.1.7. Дозиметрическое планирование опухолей головного мозга	8	2	6
1.2. Радиационная защита в лучевой терапии	4	2	2
1.2.1. Индивидуальная радиационная защита, дозиметрический контроль, организация радиационной безопасности в лучевой терапии	2	2	_
1.2.2. Расчет стационарной радиационной защиты	2	_	2
Всего	40	16	24
Форма итоговой аттестации	Собеседование		

СОДЕРЖАНИЕ ПРОГРАММЫ

1. Профильный раздел

1.1. Дозиметрическое планирование облучения пациентов

1.1.1. Понятия и определения, используемые при проведении планирования облучения

Типы объемов облучения и их определения: GTV, CTV, PTV, PRV, OAR. Оборудование для лучевой терапии: гамма-терапевтические аппараты, медицинские ускорители электронов. Этапы лучевой терапии. Фиксирующие устройства. Устройства формирования фотонных и электронных пучков: пластины диафрагмы, блоки, компенсаторы, MLC, клиновидные фильтры, тубусы, болюсы.

1.1.2. Работа с анатомической информацией о пациенте в планирующей системе

Цель применения томографов и симуляторов для предлучевой подготовки. Особенности применяемых топометрических томографов. Дальнейшее использование информации, полученной на томографах. Роль симуляторов в предлучевой подготовке пациентов. Виртуальная симуляция. Маркировка поверхности тела для наведения пучков аппаратов лучевой терапии на облучаемую мишень.

Практическое занятие. Процедура совмещения изображений КТ, МРТ, ПЭТ-КТ. Процедура контурирования.

1.1.3. Методы планирования облучения

Компьютерное планирование дистанционной лучевой терапии: 3D, IMRT, VMAT. Обработка поступающей информации о пациентах. Сетевое обеспечение радиотерапевтических комплексов.

Практическое занятие. Расчет планов облучения. Оптимизация условий облучения конкретных пациентов. Сохранение выработанных планов. Передача информации на симуляторы и аппараты лучевой терапии.

1.1.4. Критерии оценки плана облучения

Гистограмма «доза-объем». Допустимые нагрузки на органы риска. Критерии оценки объемов облучения. Эквивалентные дозы.

Практическое занятие. Процедуры оценки планов облучения для различных локализаций опухолей.

1.1.5. Дозиметрическое планирование опухолей малого таза

Существующие методики планирования облучения мишеней, локализованных в области малого таза.

Практическое занятие. Осуществление планирования облучения мишеней, локализованных в области малого таза: малый таз, прямая кишка, матка с придатками, предстательная железа. Корректировка параметров плана облучения с целью достижения дозового распределения, удовлетворяющего клиническим требованиям.

1.1.6. Дозиметрическое планирование опухолей грудной клетки

Существующие методики планирования облучения мишеней, локализованных в области грудной клетки: легкие, пищевод, средостение.

Практическое занятие. Осуществление планирования облучения этих локализаций. Корректировка параметров плана облучения с целью достижения дозового распределения, удовлетворяющего клиническим требованиям.

1.1.7. Дозиметрическое планирование опухолей головного мозга

Существующие методики планирования облучения мишеней, локализованных в головном мозге.

Практическое занятие. Осуществление планирования облучения различных типов опухолей головного мозга. Корректировка параметров плана облучения с целью достижения дозового распределения, удовлетворяющего клиническим требованиям.

1.2. Радиационная защита в лучевой терапии

1.2.1. Индивидуальная радиационная защита, дозиметрический контроль, организация радиационной безопасности в лучевой терапии

Базисные дозиметрические величины. Фоновое облучение. Радиационный фон от искусственных источников. Нормы радиационной безопасности. Основные определения. Концепция нормирования радиационного облучения

(радиационно-гигиенический и экологический принципы). Цена риска в системе обеспечения радиационной безопасности. Современные принципы нормирования облучения человека. Основные категории облучаемых лиц. Защита временем, количеством, расстоянием. Виды защит. Организация работ с источниками ионизирующего излучения (ИИИ) (работы с закрытыми источниками излучения и устройствами, генерирующими ИИ, работы с открытыми источниками излучения (радиоактивными веществами). Методы и средства индивидуальной защиты и гигиены. Радиационный контроль при работе с техногенными источниками излучения. Мероприятия по радиационной защите и обеспечению радиационной безопасности. Ограничение облучения населения в условиях радиационной аварии. Вмешательство и его уровни. Задачи службы радиационной безопасности.

1.2.2. Расчет стационарной радиационной защиты

Практическое занятие. Характеристики гамма-излучающего радионуклида. Основное условие проектирования защиты. Инженерные методы расчета защиты от первичного гамма-излучения. Расчет необходимой толщины защиты. Расчет защиты от рассеянного гамма-излучения. Защитные материалы от излучения. Защита от тормозного излучения бета-частиц. Прохождение излучения через неоднородности в защите. Лабиринт как один из методов защиты. Защита от радиоактивных веществ, образующихся в воздухе под действием тормозного излучения. Защита от вредных веществ, образующихся в воздухе под действием ИИ.

Мы приглашаем медицинских физиков для участия в проведении курса в Минск. С подробностями и условиями участия в работе семинаров можно ознакомиться на сайте нашего центра.

Статья поступила в редакцию 26.05.2017.

€. В. ТИТОВИЧ, І. Г. ТАРУТИН, Г. В. ГАЦКЕВИЧ, М. М. ПЕТКЕВИЧ

ДУ «РНПЦ онкології та медичної радіології ім. М. М. Александрова», а/г Лісовий, Мінський район, Білорусь

ВІДКРИТТЯ НАВЧАЛЬНОГО ЦЕНТРУ В РНПЦ ОНКОЛОГІЇ І МЕДИЧНОЇ РАДІОЛОГІЇ ім. М. А.ЛЕКСАНДРОВА

Мета работи. Розробка програм навчання медичних фізиків відділень променевої терапії для навчального центру в РНПЦ онкології та медичної радіології ім. М. М. Александрова.

Матеріали і методи. Навчальні плани і програми підвищення кваліфікації фахівців, що працюють у галузі променевої терапії.

Результати. Розроблено программу навчання для двох навчально-методичних курсів.

Висновки. Планується проведення одного курсу навчання медичних фізиків у 2017 році і двох курсів в 2018 року. У навчальному центрі можуть проходити навчання і громадяни інших країн.

Ключові слова: навчальний центр, променева терапія, курси для медичних фізиків.

E. V. TITOVICH, I. G. TARUTIN, H. V. HATSKEVICH, M. M. PETKEVICH

N. N. Alexandrov National Cancer Center of Belarus, a/g Lesnoy, Minsk region, Belarus

OPENING OF THE TRAINING CENTER IN THE N. N. ALEXANDROV NATIONAL CANCER CENTER OF BELARUS

Purpose. Development of training programs for medical physicists of radiotherapy departments at the training center of N. N. Alexandrov National Cancer Center of Belarus.

Materials and methods. Curricula and training programs for specialists working in the field of radiation therapy. **Outcomes.** Training programs for two training courses have been developed.

Conclusions. It is planned to conduct one training course for medical physicists in 2017 and two courses in 2018. The center provides training for citizens of other countries.

Keywords: training center, radiotherapy, course for medical physicists.

Контактная информация:

Гацкевич Георгий Владимирович

ведущий инженер отдела инженерного обеспечения лучевой терапии

РНПЦ онкологии и медицинской радиологии им. Н. Н. Александрова

а/г Лесной, Минский р-н, Беларусь

тел. раб. +375 (17) 265-42-95, тел. моб. +375 (29) 186-82-49

e-mail: hatsckevich@front.ru